Atmospheric Physics

Contents

- 1. Introduction
- Importance of meteorology and in aviation and space missions.
- Definition, structure and composition of the planetary atmospheres.
- Temperature, pressure, density: vertical profiles.
- 2. Thermal equilibrium of the planetary atmospheres
- Black bodies: Wien, Stephan-Boltzman equations.
- Solar radiation. Solar constant.
- The greenhouse effect in planetary atmospheres.
- 3. Stability and atmospheric dynamics
- Stability and vertical movements. Potential temperature.
- Atmospheric boundary layer.
- Horizontal air movements at different scales.
- Driving forces. Geostrophic and gradient winds.
- 4. Water in the Earth atmosphere: humidity, clouds and precipitation
- Water vapor in the Earth atmosphere: pressure, condensation. Definitions of humidity.
- Stability of the saturated air. Cloud formation and classification.
- Precipitation. Types of precipitation.
- 5. General circulation and synoptic meteorology
- General circulation of planetary atmospheres.
- Air masses and fronts: types, associated precipitation.
- 6. Meteorological hazards and information for aviation
- Visibility, icing, turbulence, CAT, thunderstorms.
- Bulletins: METAR, SPECI, TAF, SIGMET.
- Significant weather maps at different levels.
- Flight plans.